Looks like you're using an older browser. For the best experience possible, please upgrade your browser or download a modern browser.
We recommend these free browsers: Firefox or Chrome
You must update your Flash version to view videos. http://www.adobe.com/go/getflashplayer
For the optimal Juno experience please install Chrome. Download Chrome. Or continue to explore features of the Juno spacecraft using the links on your left.

News

06.06.18

adidas Equipment Running Guidance 93 Mens - Grey - Mens 93 ddeb1b

Ever since NASA’s Voyager 1 spacecraft flew past Jupiter in March, 1979, scientists have wondered about the origin of Jupiter’s lightning. That encounter confirmed the existence of Jovian lightning, which had been theorized for centuries. But when the venerable explorer hurtled by, the data showed that the lightning-associated radio signals didn’t match the details of the radio signals produced by lightning here at Earth.

In a new paper published in Nature today, scientists from NASA’s Juno mission describe the ways in which lightning on Jupiter is actually analogous to Earth’s lightning. Although, in some ways, the two types of lightning are polar opposites.

“No matter what planet you’re on, lightning bolts act like radio transmitters -- sending out radio waves when they flash across a sky,” said Shannon Brown of NASA’s Jet Propulsion Laboratory in Pasadena, California, a Juno scientist and lead author of the paper. “But until Juno, all the lightning signals recorded by spacecraft [Voyagers 1 and 2, Galileo, Cassini] were limited to either visual detections or from the kilohertz range of the radio spectrum, despite a search for signals in the megahertz range. Many theories were offered up to explain it, but no one theory could ever get traction as the answer.”

Enter Juno, which has been orbiting Jupiter since July 4, 2016. Among its suite of highly sensitive instruments is the Microwave Radiometer Instrument (MWR), which records emissions from the gas giant across a wide spectrum of frequencies.  

“In the data from our first eight flybys, Juno’s MWR detected 377 lightning discharges,” said Brown. “They were recorded in the megahertz as well as gigahertz range, which is what you can find with terrestrial lightning emissions. We think the reason we are the only ones who can see it is because Juno is flying closer to the lighting than ever before, and we are searching at a radio frequency that passes easily through Jupiter’s ionosphere.”

While the revelation showed how Jupiter lightning is similar to Earth’s, the new paper also notes that where these lightning bolts flash on each planet is actually quite different.

“Jupiter lightning distribution is inside out relative to Earth,” said Brown. “There is a lot of activity near Jupiter’s poles but none near the equator. You can ask anybody who lives in the tropics -- this doesn’t hold true for our planet.”

Why do lightning bolts congregate near the equator on Earth and near the poles on Jupiter? Follow the heat.

Earth’s derives the vast majority of its heat externally from solar radiation, courtesy of our Sun. Because our equator bears the brunt of this sunshine, warm moist air rises (through convection) more freely there, which fuels towering thunderstorms that produce lightning.

Jupiter’s orbit is five times farther from the Sun than Earth’s orbit, which means that the giant planet receives 25 times less sunlight than Earth. But even though Jupiter’s atmosphere derives the majority of its heat from within the planet itself, this doesn’t render the Sun’s rays irrelevant. They do provide some warmth, heating up Jupiter’s equator more than the poles -- just as they heat up Earth. Scientists believe that this heating at Jupiter’s equator is just enough to create stability in the upper atmosphere, inhibiting the rise of warm air from within. The poles, which do not have this upper-level warmth and therefore no atmospheric stability, allow warm gases from Jupiter’s interior to rise, driving convection and therefore creating the ingredients for lightning.

“These findings could help to improve our understanding of the composition, circulation and energy flows on Jupiter,” said Brown. But another question looms, she said. “Even though we see lightning near both poles, why is it mostly recorded at Jupiter’s north pole?”

In a second Juno lightning paper published today in Nature Astronomy, Ivana Kolmašová of the Czech Academy of Sciences, Prague, and colleagues, present the largest database of lightning-generated low-frequency radio emissions around Jupiter (whistlers) to date. The data set of more than 1,600 signals, collected by Juno’s Waves instrument, is almost 10 times the number recorded by Voyager 1. Juno detected peak rates of four lightning strikes per second (similar to the rates observed in thunderstorms on Earth) which is six times higher than the peak values detected by Voyager 1.

“These discoveries could only happen with Juno,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute, San Antonio. “Our unique orbit allows our spacecraft to fly closer to Jupiter than any other spacecraft in history, so the signal strength of what the planet is radiating out is a thousand times stronger. Also, our microwave and plasma wave instruments are state-of-the-art, allowing us to pick out even weak lightning signals from the cacophony of radio emissions from Jupiter. “

NASA's Juno spacecraft will make its 13th science flyby over Jupiter's mysterious cloud tops on July 16.

NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA's New Frontiers Program, which is managed at NASA's Marshall Space Flight Center in Huntsville, Alabama, for NASA's Science Mission Directorate. The Microwave Radiometer instrument (MWR) was built by JPL. The Juno Waves instrument was provided by the University of Iowa. Lockheed Martin Space, Denver, built the spacecraft.
adidas y-3 men shoes, size 7.5, blue/black, slightly used items,Men’s ADIDAS NMD Boost Originals Black/ White Athletic Shoes Size 8,New Adidas Originals Pro Shell Shoes (BY4381) Black/White/Gold Men's 13,adidas Originals Mens Swift Run Running Shoe Red/Collgiate Burgundy/White CG4117,Adidas BUSENITZ White White Leather Skateboarding D69124 (326) Men's Shoes,Adidas Lux Mid Black/gum Mens Shoe Sz,Adidas Mens Alphabounce ck m, Black/White/Black Running Shoe,New Men's ADIDAS Crazy Explosive Low - BY3234 - White Red Basketball Shoe,Adidas Men's US Men's Size 10 1/2 EQT Support 93/17 Sneakers White/Blue BZ0592,ADIDAS TERREX TRACEROCKER MEN'S HIKING TRAIL SHOES/S82122.386,NEW MENS ADIDAS D LILLARD 3 SNEAKERS BY3762-SHOES-BASKETBALL-SIZE 12Adidas Originals Men's CC Ride NEW AUTHENTIC Black/Orange G47935,Adidas Men's Terrex Agravic BB0960 in Black Black Vista Grey Sz 8-12 New,Adidas Men's Baseball Speed Trainer 4 Athletic Running Tennis Shoe CG5131,Adidas Pure Boost ZG Trainer Mens Running Training Shoes Size 10.5 Black Blue,New MENS ADIDAS NATURAL TUBULAR SHADOW KNIT TEXTILE Sneakers Running StyleAdidas Alphabounce Zip M Men’s Size 13 Running Shoes Grey/White BW1385 NEWAdidas White Mountaineering Tubular Mens Sneakers, Green, Size 12 Originals,Adidas D Rose 773 III Basketball Men's Shoes,NIB MENS ADIDAS CTX9TIS BLUE BLACK WHITE ATHLETIC SNEAKERS SHOES F98555,NEW ADIDAS GEOFIT Basketball Shoes Mens 20 M Blue White Striped High Top Sneaker,Mens ADIDAS AEROBOUNCE RUNNING SHOES Black Sneakers BW0285 NEWNew Men's ADIDAS Crazy Explosive Low NBA - BY3253 - Teal White Basketball Shoe,Adidas Originals Men's Superstar XENO Sneakers Size 11 us D69366,ADIDAS SUPERSTAR B27140 BLACK /WHITE MEN US SZ 9.5Adidas Iniki I5923 Vista Gray Size 8 XR1 Yeezy Ultra Boost NMD,Adidas x PHARRELL MEN WILLIAMS PW TENNIS WHITE/RAW PINK CP9763 BRAND NEW IN BOX,Mens Adidas NEO Cloudfoam Ultimate Black Sneaker Athletic Shoes CG5801 Sz 8.5-14Adidas D Rose 8 Basketball Shoes Men’s Size 13 Grey White CQ1620 NEWAdidas Pro Model CQ0873 Scarlet Black Gold Men Sz 7.5 - 12
adidas BERMUDA - Tan - Mens,

Members of the media, please contact:

D.C. Agle
Juno Media Relations Representative
NASA's Jet Propulsion Laboratory
Dwayne Brown
NASA Public Affairs Officer
NASA Headquarters

Where is Juno now?

Visualize Juno’s journey through space and get up-to-date data sets using NASA's Eyes on the Solar System 3D interactive.